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We present the full thermodynamics of an interacting fluid confined by an arbitrary external potential. We
show that for each confining potential, there emerge “generalized” volume and pressure variables V and P, that
replace the usual volume and hydrostatic pressure of a uniform system. This scheme is validated with the
derivation of the virial expansion of the grand potential. We discuss how this approach yields experimentally
amenable procedures to find the equation of state of the fluid, P=P�V /N ,T� with N the number of atoms, as
well as its heat capacity at constant generalized volume CV=CV�V ,N ,T�. With these two functions, all the
thermodynamics properties of the system may be found. As specific examples we study weakly interacting
Bose gases trapped by harmonic and by linear quadrupolar potentials within the Hartree-Fock approximation.
We claim that this route provides an additional and useful tool to analyze both the thermodynamic variables of
an ultracold trapped gas as well as its elementary excitations.
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I. INTRODUCTION

The intense experimental and theoretical activity in the
field of quantum ultracold trapped gases �1–24� has largely
stimulated first principles analysis of the physics of these
inhomogeneous systems. In particular, the calculation of den-
sity profiles has turned out to be of fundamental importance
since it is one of the main measurable quantities in the recent
experiments. From the density profile several thermody-
namic quantities can be obtained, such as the number of
particles and the temperature. However, because the hydro-
static pressure is a local quantity and the volume of the sys-
tem cannot be rigorously defined, the use of thermodynamics
as a tool to analyze and characterize such trapped gases has
been of limited application. For instance, important proper-
ties and quantities such as the equation of state of the fluid or
its heat capacities, are lacking. As we discuss here, those
properties can be extracted from the knowledge of the den-
sity profile and other simple properties of the trapped gases.

The main purpose of this paper is to emphasize the fact
that the thermodynamics of trapped systems must be refor-
mulated in terms of the appropriate mechanical variables
that, for lack of a better name, we shall call generalized
pressure P and volume V. That is, the usual hydrostatic pres-
sure p and the volume V of a fluid contained in a vessel of
rigid walls are no longer thermodynamic variables for a fluid
confined by an external inhomogeneous field Vext�r��. As
mentioned above, in the presence of an arbitrary confining
potential, the pressure of the fluid becomes a local variable
p= p�r�� and the volume is strictly undefined. As we shall
show there is a “new” and unique pair of variables P and V
that replace the usual ones, p and V. We shall illustrate these
variables with specific examples. This result has already
been pointed out for a gas trapped in a harmonic potential
�16–18� and incipient comparisons have been made with ex-

periments in ultracold Na gases �25–27� showing its poten-
tial usefulness. However, we believe the main point has not
been fully appreciated, namely, the fact that a different set of
thermodynamics variables must be used for a given external
confining potential. We proceed here to fill this gap, deduc-
ing the virial expansion for the grand potential in the grand
canonical ensemble for an arbitrary external potential, valid
for classical and quantum fluids, either ideal or with pairwise
interatomic interactions. Extensions to three-or higher-body
interactions may be further considered. We discuss the physi-
cal meaning of the generalized pressure and its relevance
regarding the equation of state of the fluid, i.e., P
=P�V /N ,T� with N the number of molecules or atoms in the
fluid and T the temperature. This finding should have imme-
diate practical applications since all the thermodynamic
properties, especially phase transitions, can be quantitatively
described and certainly visualized in the corresponding phase
diagram. We emphasize the fact that the generalized pressure
can be very simply measured or calculated once the particle
density profile ��r�� is known. This procedure has already
been exploited in the analysis of experimental data of
trapped Na ultracold gases in quadrupolar �25� and in har-
monic traps �26,27�. As a further step, we propose a simple
and independent experiment that, in addition to the knowl-
edge of the equation of state, allows for the determination of
the heat capacity at constant generalized volume V, CV. This
experiment should be easily performed in the currently con-
fined ultracold gases. To the best of our knowledge there are
no measurements of such a heat capacity. It is a simple ex-
ercise to show that knowledge of the equation of state P
=P�V /N ,T� and the heat capacity CV=CV�N ,V ,T� suffices
to know all the thermodynamics of a pure fluid. We need not
overemphasize the fact that the quantitative features of the
latter quantities are direct consequences of the interatomic
interactions and of the collective excitations of the fluid.

As a corollary of our analysis we shall show that the
so-called “local density approximation” �LDA� follows
within the appropriate thermodynamic limit of the confining
potentials. Our results are in agreement with rigorous proofs
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of LDA for classical systems �28,29� and quantum systems
�30� as well; these works have been largely overlooked in the
current literature of ultracold gases, but are very relevant
since they show that, under the appropriate conditions, LDA
is an exact procedure. The validity of LDA is expected, and
certainly widely used, because in the trapped gases the main
nonuniformity appears at macroscopic length scales due to
the presence of the confining external field. That is, the latter
must be “macroscopic” in order to trap a large number of
particles. For macroscopic potentials this equivalently means
that the energy-level separations of the external potential are
much smaller than the typical atomic and collective excita-
tions �1–11�. Although LDA has been used in essentially all
current works on ultracold gases that yield density profiles,
its validity is mostly assessed on these physical grounds.
Thus, it is reassuring to find that the virial expansion when
applied to confined quantum fluids yields LDA as well. As
we shall discuss, however, care must be taken when using it.
That is, LDA can be directly used for the grand potential
density, the entropy density, and the particle density, but not
so for the internal energy and other free energy densities,
among other possible thermodynamic quantities. That is,
while it gives a procedure to calculate thermodynamic prop-
erties of a confined inhomogeneous fluid, it does not imply
that the local states of the trapped fluid are thermodynamic
states of the corresponding homogenous fluid.

To show the usefulness of the general framework we have
introduced, we devote a section to analyze a confined weakly
interacting Bose gas as a particular and relevant example. We
study gases confined by harmonic and by linear quadrupolar
traps within the Hartree-Fock approximation. We calculate
the phase diagram P-T and the heat capacity at constant
volume. Based on these properties, a brief discussion on the
nature of the normal gas to superfluid transition is presented.
It is found that the transition is completely smooth but with
no trace of critical behavior.

II. THERMODYNAMIC VARIABLES OF TRAPPED GASES

The system consists of N identical atoms or particles of
mass m with Hamiltonian

HN = �
i=1

N
p� i

2

2m
+ �

i�j

u��rij�� + �
i=1

N

Vext�r�i� . �1�

We assume additive pairwise potentials but the analysis may
be extended to arbitrary interatomic interactions. The exter-
nal potential Vext�r�� confines the system. To serve this pur-
pose, it should have at least one minimum and must obey
that Vext�r��→� for �r��→�. For rigid-wall containers it is
customary not to write the potential; here, we include it as
Vext�r��=0 if r� is within the volume V enclosed by the rigid
walls and Vext�r��=� if r� is outside of it. Typical examples of
traps of atomic gases are Vext�r��= �1 /2�m��� ·r��2, a harmonic

potential, such as in Ref. �1�, and Vext�r��= �A� ·r��, a linear qua-
drupolar potential �25�; but one can consider any confining
potential such as a Pöschl-Teller �31� Vext�r��=V0 /cos2��� ·r��
for �x��� /2�x and analogously for y and z. This last case
serves as an example of a potential that, in addition to a

generalized volume, introduces an additional intensive vari-
able, namely, V0. We write these potentials to exemplify the
appropriate thermodynamic variables as well as the thermo-
dynamic limit for each case.

To illustrate how the generalized variables emerge and
how the thermodynamic limit is to be taken, we shall deal
here first with a classical ideal gas. Further below, we shall
treat an interacting fluid and we shall verify the correctness
of the identification of the variables given here. Consider,
therefore, a system given by the Hamiltonian �1� with no
interatomic interactions, i.e., u��rij���0. Assume the system
is in thermodynamic equilibrium at temperature T. The ca-
nonical partition function is

Z�T,N,V� =
1

h3NN!
� d3Np� d3Nr

	exp	− 
�
i=1

N 
 p� i
2

2m
+ Vext�r�i��� , �2�

where 
=1 /kT. We assume the external confining potential
to be of the form Vext=Vext�x / lx ,y / ly ,z / lz ,�� where the
quantities li do not necessarily have units of length and �
stand for other parameters that we assume to remain constant
throughout. Integration of the partition function yields

Z�T,N,V� =
1

N!�T
3N ��
�V�N, �3�

where �T=h / �2�mkT�1/2 is de Broglie thermal wavelength,
V= lxlylz is the generalized volume, and the function �
� is
defined by

�
�V =� e−
Vext�r��d3r . �4�

Helmholtz free energy is found with F=−kT ln Z and, after
taking the limit N→�, yields

F�N,T,V� = − NkT	ln
V�
�

N�T
3 � + 1� . �5�

For the free energy per particle, F /N, to remain finite in the
thermodynamic limit, N→�, it must be required that the
“generalized” volume diverges, i.e., V→�, keeping constant
the “density” N /V. As it will be fully justified below, V is an
extensive thermodynamic variable. The generalized volume
certainly is proportional to the actual average volume that the

system occupies, V̄�
�V. This average volume, however,
is not an independent thermodynamic variable since it de-
pends on the temperature. Moreover, it is not a correct vari-
able since the actual volume that the system occupies is, in
fact, unbounded. Nevertheless, the thermodynamic limit V
→� indeed implies that the volume of the system becomes
arbitrarily large.

For the particular external potentials here considered one
finds V=V for rigid walls, V=1 /�x�y�z for the harmonic
potential, V=1 /AxAyAz for the quadrupolar potential, and V
=1 /�x�y�z for the Pöschl-Teller potential. Likewise, we find
�
�=1 for rigid walls, �
�= �2� /
m�3/2 for the harmonic
potential, �
�=8� /
3 for the quadrupolar potential, and
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�
�=4��−�/2
�/2 x2 exp�−
V0 /cos2 x�dx for the Pöschl-Teller

potential. For the harmonic case, it has been known for quite
a long time that the thermodynamic limit is the one here
presented �32�. As we shall see, while the role of the gener-
alized volume is completely analogous to that of the usual
volume in homogeneous systems, the thermodynamic prop-
erties of the different confined fluids show very strong varia-
tions on their temperature dependences due to the function
�
�.

For purposes of presentation we have assumed that the
fluids under study are effectively three dimensional. That is,
we suppose that in the three spatial dimensions the trap be-
comes macroscopic. It is clear that the theory can be adjusted
to deal with �quasi-� two- and one-dimensional systems. For
this to occur, the trap must be spatially very tight in one or
two directions, which also implies that the fluid thermal ex-
citations in those directions are smaller than the trap energy
levels in the same direction; thermodynamic behavior can
only exist in the remaining directions. This is the case for the
very recent studies on the Berezinskii-Kosterlitz-Thouless
transition in quasi-2D harmonic traps in clouds of 87Rb
�33,34� and 23Na gases �35�, and where a generalized area
and pressure can be defined.

As it will be fully justified below with the virial expansion
for an interacting gas confined in an arbitrary potential, the
generalized volume is a bona-fide extensive variable. There-
fore, there exists an intensive variable, conjugate to the vol-
ume V, that we call the generalized pressure P and given by

P = − 
 �F

�V�N,T

. �6�

Here, F=F�N ,T ,V� is Helmholtz free energy including in-
teratomic interactions. By a simple calculation one obtains

P =
1

3V��
i=1

N

r�i · �� iVext�r�i�� =
1

3V � ��r��r� · �� Vext�r��d3r ,

�7�

where in the first line the average is performed in the corre-
sponding ensemble and in the second line we have intro-
duced the density profile ��r��. The last equality is a remark-
able formula since it gives rise, with the sole knowledge of
the density profile ��r�� and the temperature T, to a direct
route for the calculation of the generalized pressure and,
hence, to the equation of state of the fluid, P=P�V /N ,T�. We
recall that the density profile may be known from exact or
approximate calculations, or directly from experiments. In
Sec. V we shall use this result for the calculation of the phase
diagram of a confined interacting Bose gas within the
Hartree-Fock approximation. We note that the expression �7�
is valid for any external potential, including the rigid-wall
case. It is interesting to note that for the latter case, such an
identification of the hydrostatic pressure serves to be used in
the so-called virial theorem to find the well-known expres-
sion relating the pressure to the two-body density correlation
function �36�. Here, we find that Eq. �7� yields a direct cal-
culational tool for the generalized pressure. Thus, for inho-

mogeneous systems knowledge of the one-body density suf-
fices.

It is important to point out that the identification of the
generalized pressure is not only a formal one but it has a
clear physical meaning. From the thermodynamic definition
of P, Eqs. �6� and �7�, one sees that the product PV equals
�1 /3� of �minus� the virial of the external force. Hence, one
can recall that mechanical equilibrium in a fluid is given by
Pascal law,

�� · P̃�r�� = − ��r���� Vext�r�� , �8�

where P̃�r�� is the pressure tensor of the fluid. One expects

the pressure tensor to be a local quantity, P̃�r��= p�r��1̃, where

1̃ is the unit tensor and p�r�� is the local hydrostatic pressure,
barring phase-separated states within the confined fluid. By
calculating the virial of the right-hand side of Eq. �8�, and
after integrating by parts, one finds

� Tr P̃d3r =� d3r��r��r� · �� Vext�r�� = 3PV . �9�

That is, P for a nonuniform fluid confined by a given exter-
nal potential plays the same thermodynamic role as the hy-
drostatic pressure p in a uniform fluid: It is the quantity that
bears the information that the fluid is in mechanical equilib-
rium.

To obtain the thermodynamics of a pure system the
knowledge of the free energy as a function of two indepen-
dent variables is needed. Thus, in addition to the equation of
state, one needs another quantity. This may be the heat ca-
pacity at constant generalized volume. As we now show, the
measurement of the heat capacity CV should also be achiev-
able within the current experimental setups. We propose here
how to measure it by means of adiabatic compressions and
expansions. We note first that the ultracold trapped gases are
actually isolated and confined by magnetic or optical traps
�1–11�. Therefore, a slow change of the confining potential,
namely, of the generalized volume V, should give rise to an
increase or decrease of the temperature T depending on
whether the fluid is compressed or expanded. Since the gen-
eralized volume and temperature are measurable in the cur-
rent experiments, the quantity ��V /�T�N,S can, therefore, be
calculated. The corresponding heat capacity can then be
evaluated using the following thermodynamic relationship:

CV = − T
 �P
�T

�
V,N

 �V

�T
�

N,S
. �10�

We note that previous knowledge of the equation of state is
needed for the calculation of the second factor on the right-
hand side of �10�. However, the measurements of the equa-
tion of state and of the quantity ��V /�T�N,S correspond to two
different sets of experiments.

III. VIRIAL EXPANSION FOR ARBITRARY CONFINING
POTENTIALS

With the identification of the generalized variables and the
corresponding thermodynamic limit in hand, we now turn to
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the general problem of an interacting gas, classical or quan-
tum. We extend the analysis described in the texts by Mayer
and Mayer �37�, ter Haar �38� and Blatt �39�. Again, we
assume the system is in thermodynamic equilibrium at tem-
perature T and we analyze it in the grand canonical en-
semble. We thus consider a chemical potential � whose
value may be found by imposing a given number of particles
N. The grand potential is given by

� = − kT ln �
N=0

�

e
�N Tr� e−
HN, �11�

where

Tr� e−
HN =
1

h3NN!
� d3Nr� d3Npe−
HN, �12�

if the system is classical, and

Tr� e−
HN

=
1

N!�P

�P� d3Nr�r�1,r�2, . . . ,r�N�e−
HN�r�1P,r�2P, . . . ,r�NP� ,

�13�

if the system is quantum. The sum is over all permutations of
1 ,2 , . . . ,N and �= �1 for bosons or fermions.

To find the virial expansion, Eq. �11� is first rewritten as
�37–39�

− 
� = �
n=1

�

e
�n 1

n!
In, �14�

where the functions In are given by

In = �
1

h3n � d3nr� d3npUn�r�1,p�1; . . . ;r�n,p�n� ,

� d3nrUn�r�1, . . . ,r�n� � �15�

for classical and quantum systems, respectively, and where
the Ursell functions are given by the hierarchy: First order,

U1�1� = W1�1� , �16�

second order,

U2�1,2� = W2�1,2� − U1�1�U1�2� , �17�

third order,

U3�1,2,3� = W3�1,2,3� − U1�1�U2�2,3� − U1�2�U2�1,3�

− U1�3�U2�1,2� − U1�1�U1�2�U1�3� , �18�

and so on, and

Wn�1,2, . . . ,n�

=� e−
Hn,

�
P

�P�r�1,r�2, . . . ,r�n�e−
Hn�r�1P,r�2P, . . . ,r�nP��
�19�

for classical and quantum systems, respectively.

The problem of the virial expansion reduces to find the
value of each contribution In in the thermodynamic limit,
taking into account the interactions among the atoms or mol-
ecules. This is what we do now for a general confining ex-
ternal potential Vext�r��. We proceed by systematically calcu-
lating In order by order and then generalize it to In. We did so
from I1 to I4. Since the calculations are quite lengthy, though
straightforward, we explicitly present in the Appendix the
case I2 only. Next we discuss the results.

The calculation of I1 is very simple and it turns out that,
in the thermodynamic limit, the classical and quantum cases
give the same result,

I1 = �
1

h3 � d3p� d3re−
H1,

� d3r�r��e−
H1�r�� , � �20�

where the one-particle Hamiltonian H1 is given by

H1 =
p�2

2m
+ Vext�r�� . �21�

In the limit, one finds

I1 =
1

�T
3 �
�V �22�

for both classical and quantum cases.
In the Appendix we show the explicit calculation of I2.

That analysis suffices to see how to find In. The key is in the
separation of center of mass and relative coordinates. This

change of variables is generally, R� = 1
n �r�1+r�2+ ¯ +r�n�, r��1�

=r�1−r�2, r��2�=r�2−r�3 , . . ., r��n−1�=r�n−1−r�n, with their canonical
conjugate momenta.

In both the classical and quantum cases, the main assump-
tion is the same, namely, that one must take the thermody-
namic limit V→�. This allows us to make the approxima-
tion,

Vext�r�1� + Vext�r�2� + ¯ + Vext�r�n� � nVext�R� � , �23�

where �r�1 ,r�2 , . . . ,r�n� are to be given in terms of the variables

�R� ,r��1� ,r��2� , . . . ,r��n−1�� by the above transformation. This ap-
proximation separates the center-of-mass motion from the
relative ones. The former is always quasiclassical and its
contribution to In is proportional to �n
�V /�T

3n, while the
contribution from the relative coordinates yields the virial
coefficients bn; these can be classical or quantum, but they
are the same for any external potential. That is, we find

In =
V

�T
3n�n
�bn. �24�

The validity of the above procedure, in the classical case,
reduces to require that the intermolecular potential must van-
ish for lengths r��, with � the range of such a potential.
Additionally, the interaction must be “short range,” namely,
decaying faster than 1 /r3, otherwise the virial coefficients bn
do not exist �37,40�. In the quantum case and for high tem-
peratures, the range of the relative variables r� is bounded due
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to presence of the potential u�r� and the validity has the same
limitations as in the classical case. At low temperatures the
bound is set up by either the thermal de Broglie wavelength
or the scattering length a �41�. If the gas behaves as an ideal
one, the relevant length is de Broglie wavelength. In any
case, as long as the relative coordinates remain bounded by a
finite quantity, however large, one can take the limit of very
large volumes, V→�, and implement the thermodynamic
limit just as in the classical case.

Summarizing, we find that in the thermodynamic limit the
grand potential can be written in general as

� = − kTV�
n=1

�
e
n�

n!

�n
�
�T

3n bn�T� , �25�

where quantum or classical virial coefficients should be
used; in both cases b1=1. Expression �25� for the grand po-
tential is one of the main results of this paper. It is the virial
expansion for arbitrary confining potentials. The number of
particles N and the entropy S can be calculated from �minus�
the partial derivatives of � with respect to � and T, respec-
tively. �, N, and S are found to be homogeneous first-order
functions of V, and this implies that V must be an extensive
variable and justifies the thermodynamic limit as used above.
From the expression �=−PV, the generalized pressure is
read off �25�. Strictly speaking, the expression for � is an
expansion in the fugacity z=exp�
��. The actual virial ex-
pansion of the pressure P, as a power series in the general-
ized density N /V, may be found from inverting N
=N�V ,� ,T� to yield �=��N /V ,T�, and substitute into P
=P�� ,T�.

Note that the most important difference of the grand po-
tential between a given arbitrary external potential and the
homogeneous case is the function �
� rather than the gen-
eralized volume V. The latter enters in the same way for any
potential, including the rigid-walls case; that is, it gives rise
to the intensive quantities formed between the extensive
variables N, S, E, etc., and V, and that remain finite in the
thermodynamic limit, i.e., N /V, S /V, E /V, etc. However, as
it is well known from calculations in external potentials, the
temperature dependence of the thermodynamic variables is
very different and unique for each external potential. This
difference is contained in the function �
�. This will be
exemplified in the next section.

To illustrate the use of Eq. �25�, we apply it to an ideal
quantum gas. From the analysis in the Appendix and their
corresponding value for third and fourth orders, one finds
that the virial coefficients are given by

bn
�0� = �n+1 n!

n5/2�T
3�n−1�. �26�

The grand potential for an ideal quantum gas can, thus, be
written as

− 
� =
V
�T

3 �
n=1

�

en
��n
�
�n+1

n5/2 . �27�

This formula can be directly compared with the correspond-
ing ones for, say, the rigid walls potential V=V and �n
�

=1, or the harmonic potential V=1 /�3 and �n
�
= �2�kT /nm�3/2. The “textbook” formulas for these poten-
tials are �42�

− 
� =
V

�T
3

1

��5/2��0

� x3/2dx

ex−
� − �
�28�

for rigid walls, and

− 
� = 
 kT

��
�3 1

��4��0

� x3dx

ex−
� − �
�29�

for a three-dimensional �3D� isotropic harmonic potential.
Expansion of the integrals of these last two equations in
powers of e
� yield the virial expansion, Eq. �27�.

IV. A COMMENT ON THE “LOCAL DENSITY
APPROXIMATION”

The exactness, or validity, of the “local density approxi-
mation” follows right away from the corresponding expres-
sions for �, N, and S, as given by Eq. �25�. Consider the
rigid-wall external potential, V=V and �n
�=1. We can thus
define the grand potential per unit volume ��� ,T�=� /V, the
number of particles per unit volume �particle density�
��� ,T�=N /V, and the entropy per unit volume s�� ,T�
=S /V. We now consider the same system but confined by an
external potential Vext�r��. We can find its thermodynamic
properties by implementing the “local density approxima-
tion:” Take �, �, and s of the homogenous case and make
those functions per unit volume to be their “local” densities
��r��, ��r��, and s�r��, in the presence of the given external
potential, by replacing the chemical potential � by the “lo-
cal” chemical potential �local�r��=�−Vext�r��. It turns out that
integration of ��r��, ��r��, and s�r�� over all space yield the
exact expansions for �, N, and S, in the presence of Vext�r��,
as given by Eq. �25� and its derivatives. That is, one finds
that LDA procedure gives rise to exact results. It is important
to point out, however, that the validity of LDA is indepen-
dent of the convergence of the virial expansion. The validity
of LDA for classical and quantum systems in the thermody-
namic limit was rigorously proved in Refs. �28–30�, respec-
tively.

The above description does show that in the thermody-
namic limit the system is locally homogenous and that “lo-
cally” actually means in length scales large compared with
those of interatomic interactions. It is in this latter connec-
tion that LDA is largely used without the need of further
justification. There is a warning, however, that must be raised
when using LDA. It may appear that if one is able to find any
thermodynamic variable q for a homogenous system and ex-
press it in terms of the chemical potential � and temperature
T, namely q=q�� ,T�, its local counterpart when in the pres-
ence of an external potential Vext�r�� is simply q�r��
=q��local�r�� ,T�. This, in general, is incorrect; its is strictly
justified for � /V, N /V, and S /V only. It is incorrect, for
instance, for the internal energy and other free energies, ex-
cept �, as well as for other functions such as heat capacities.
This statement can be verified by using expression �25� for
the grand potential of a confined fluid. Thus, the fact that the
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system is locally homogeneous does not imply that the local
states of the confined fluid are thermodynamic states of the
corresponding homogeneous system, i.e. qlocal�r��
�q��local�r�� ,T� in general.

V. EQUATION OF STATE AND HEAT CAPACITY OF
WEAKLY INTERACTING BOSE GASES

The chief importance of correctly identifying the general-
ized pressure and volume, resides in its use as a tool to
characterize a given system. For the simple case of a one-
component gas and for a fixed interatomic interaction, there
are only two independent thermodynamic variables, say, the
temperature T and the molar, or per particle, generalized vol-
ume v=V /N. Therefore, at least two further functions of
these variables should be measured or calculated indepen-
dently, in order to obtain the full thermodynamics of the
system. We choose the equation of state P=P�v ,T� and the
specific heat at constant generalized volume CV /N=cv�v ,T�.
As we have explained in Sec. II, these two quantities should
be very easily measured in the current experiments of ultra-
cold gases.

Both as an example of the use of the generalizad variables
and because of the relevance to current experiments and
theory dealing with ultracold trapped gases, we now turn our
attention to the calculation of the equations of state and heat
capacities of weakly interacting Bose gases confined by har-
monic and linear quadrupolar potentials, Vext�r��
= �1 /2�m��� ·r��2 and Vext�r��= �A� ·r��, within the Hartree-Fock
�HF� approximation �13,42,43�. First, we write the Hamil-
tonian in a second quantized version and consider a contact
interatomic potential,

H = �
n

�nan
†an + U�

jklm
�aj

†ak
†alam, �30�

where n and �n stand for the eigenstates and eigenvalues of
the three-dimensional one-particle Hamiltonian in the pres-
ence of the external potential. an

† and an are creation and
annihilation operators. The “prime” in the second sum refers
to the restrictions introduced by assuming an isotropic two-
body potential. The coupling parameter is U=4��2a /m,
with m the atom mass and a the scattering length, assumed
positive throughout. This form of the interaction is appropri-
ate for gases at low temperatures �13,42�.

The Hartree-Fock approximation yields a self-consistent
calculation for the density profiles of the thermal and the
condensate densities, �th�r�� and �0�r��, that leads to the fol-
lowing set of equations �43�:

�th�r�� =
1

�T
3 g3/2�
�� − Vext�r�� − 2U�th�r�� − 2U�0�r����

�31�

and

�0�r�� =
1

U
�� − Vext�r�� − 2U�th�r��� , �32�

with the constraint that the number of particles is a given
value N,

N =� �th�r��d3r +� �0�r��d3r . �33�

In Eq. �31�, g3/2��� is the usual Bose function gn��� for n
=3 /2. Equation �32� is to be understood valid for values
when the right-hand side is positive or zero. As a matter of
fact, this is how the normal to Bose-Einstein condensation
�BEC� or superfluid transition is identified, i.e., given the
temperature T, the transition occurs for the value of the
chemical potential below which the condensate density �0�r��
is different from zero. Equation �32� is the Gross-Pitaevskii
equation in the thermodynamic limit where the kinetic en-
ergy term may be safely neglected. The above set of equa-
tions suffers essentially from the fact that it does not consider
the expected Bogoliubov excitations at very low tempera-
tures. However, it should be fine for temperatures near the
transition �43�.

As it is clear from the above set of equations, their solu-
tion yields the density profile ��r�� and the chemical potential
� for given values of the temperature T and the generalized
volume v=V /N. The value of generalized pressure P�v ,T� is
found from Eq. �7� and, together with ��v ,T�, one can fur-
ther find the molar Helmholtz potential f =F /N as f�v ,T�=
−Pv+�. The molar entropy s= ��f /�T�v follows and, there-
fore, the specific heat cv=T��s /�T�v. Our results are summa-
rized in Figs. 1–4.

Figures 1 and 2 show a few isochores �v=const� of the
equation of state for both external potentials, comparing the
ideal case with the interacting HF approximation. Note that
although the generalized pressures are quantitatively differ-
ent, even with different units, their qualitative behavior is
essentially the same. We make the following comments.
First, in the ideal case the transition BEC line indicates that
the pressure vanishes as T→0. That is, just as in the uniform
case �40�, the condensate exerts no pressure. This is clearly
changed once interactions are included: The pressure of the
condensate is no longer zero, and even at T=0 the interac-
tions give rise to a remnant pressure. Second, the transition
temperature, different for each isochore, is shifted down in
the interacting case with respect to the ideal one. This down-
shift of the transition temperature is in agreement with re-
sults of more general theories of trapped Bose gases �15�.
Moreover, this is an effect due solely to the interactions and
not related to finite size effects �13,44�. Last, the transition
line in the interacting case, as shall be further described be-
low, marks a smooth normal gas to superfluid transition, dif-
ferent to BEC where discontinuities in the second derivatives
of the free energy are encountered; in the interacting case, up
to second derivatives—and appears that to higher order as
well—the free energy is continuous.

In Figs. 3�a� and 3�b� we show the specific heat as a
function of temperature, for a given isochore, for both poten-
tials. Again the qualitative behavior is the same. Once more,
we see that the transition temperature in the interacting case,
marked with an arrow, is lower than that of the ideal case.
But more interestingly, one finds that at the transition tem-
perature the specific heat does not show its maximum value,
but rather it is a �local� minimum, and that the transition is
continuous. Thus, it shows sign of being neither a first order

NADIA SANDOVAL-FIGUEROA AND VÍCTOR ROMERO-ROCHÍN PHYSICAL REVIEW E 78, 061129 �2008�

061129-6



nor a critical transition. We understand that the present is a
mean-field calculation and, as mentioned above, perhaps not
the best description of a superfluid; however, mean-field
theories typically yield incorrect quantitative results but do
not change the order of the transition. The origin of the con-
tinuity of all the thermodynamic properties may be traced
back to the behavior of the condensate fraction. This is ex-
emplified in Fig. 4 where we compare the condensate frac-
tion N0 /N of the ideal with the interacting case. Below Tc,
the ideal condensate fraction is N0 /N=1− �T /Tc�3/2 for the
uniform case, N0 /N=1− �T /Tc�3 for the harmonic trap, and
N0 /N=1− �T /Tc�9/2 for the linear quadrupolar potential.
Above Tc, N0 /N=0. Thus, the transition in the ideal case has
a discontinuity in the derivative. However, for the interacting
case, as shown in Fig. 4, there appears that this transition is
completely smooth, with no discontinuity or singularity at
all.

Preliminar comparisons with experiments performed in
23Na gases trapped in a harmonic potential �27� indicate that
below Tc the role of the interactions is still underestimated
by HF, yielding a calculated generalized pressure lower than

the experimental one. We believe this is due to the fact that
HF elementary excitations are not the expected ones. An im-
provement using better theories, that include the proper role
and statistical description of Bogoliubov modes �45� and/or
including the Popov approximation �13,42�, is certainly de-
sirable. Nevertheless, these initial experiments do show the
usefulness of the knowledge of the equation of state, not only
for purposes of characterization, but clearly as an additional
tool to learn about the elementary excitations of ultracold
gases.

VI. FINAL REMARKS

As a final comment, we emphasize that the use of the
generalized thermodynamic variables here presented should
lead to correct results by simply following the rules of ther-
modynamics, without necessarily resorting to a local picture.
It is clear to us that for this to be useful one needs, first, to
change the usual intuition on volume and hydrostatic pres-
sure to their generalized counterparts and, second, to provide
examples where these variables lead to new insights. To
show how this approach serves to fully study and character-
ize a confined system, we have studied the BEC �superfluid�
transition in a weakly interacting Bose gas trapped by two
different potential. We would like to emphasize that such an

(a)

(b)

FIG. 1. Phase diagram P-T of a weakly interacting Bose gas
confined by a harmonic trap �a� and by a linear quadrupolar poten-
tial �b�. Several isochores �V /N=constant� are shown with dotted
lines. The solid line shows the normal gas to superfluid �BEC�
transition. Compare with Fig. 2, the ideal case. In the latter the BEC
transition line occurs at higher temperatures than in the interacting
case. Note also that in the interacting case, below the transition
temperature, the condensed phase exerts pressure. Units are �=1,
m=1, and a=1.

(a)

(b)

FIG. 2. Phase diagram P-T of an ideal Bose gas confined by a
harmonic trap �a� and by a linear quadrupolar potential �b�. Several
isochores �V /N=constant� are shown with dotted lines. The solid
line shows the BEC transition. See caption of Fig. 1 for further
details.
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analysis is possible because of the identification of the proper
variables. It is our belief that the measurement of the equa-
tion of state and the heat capacity in terms of the generalized
thermodynamic variables offers a complementary and useful
tool for the analysis of ultracold trapped fluids.

Although much has been learned with use of LDA, we
have indicated that care must be taken when using it. This
should be more notorious when dealing with phase-separated
fluids where it is not clear if LDA suffices for their descrip-
tion since the interfacial widths of the phase boundaries are
expected to be of the order of the range of the intermolecular
interactions �36�. This situation appears to be the case for the
states found recently in trapped gases of 6Li atoms �8,9,11�,
where it is found that the confined fluid phase separates into
a superfluid and a normal paramagnetic gas, showing clearly
an interfacial phase boundary. There are differing theoretical
studies of whether LDA should be enough or if “surface
tension” terms should be included �19–21�. In general, for

such inhomogeneous states, one should not expect a local
picture to be valid across the interface; the thermodynamic
potentials are indeed expected to be nonlocal on the density
profiles.
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APPENDIX: DERIVATION OF I2

In this Appendix we provide the derivation of the second-
order contribution to the virial expansion.

Classical case. From Sec. III we find that I2 in the clas-
sical case is given by

I2 =
1

h6 � d3p1� d3r1� d3p2� d3r2e−
H2

−
1

h6
� d3p1� d3r1e−
H1�
� d3p2� d3r2e−
H1�
�A1�

with H2 given by Eq. �1� for N=2. We make the change of
variables to center of mass and relative coordinates,

R� = �r�1 + r�2�/2 and r� = r�1 − r�2, �A2�

with their canonical momenta P� and p� . Thus,

I2 =
1

h6 � d3P� d3R� d3p� d3re−
Hc.m.
�2�

e−
H2

−
1

�T
6 � d3R� d3re−
�Vext�R

� +�r�/2��+Vext�R
� −�r�/2��� �A3�

where the center-of-mass Hamiltonian is

(a)

(a)

(b)

FIG. 3. Specific heat at constant generalized �molar� volume cv
vs temperature T for a gas confined by a harmonic trap �a� and by a
linear quadrupolar potential �b�. The dotted line is the ideal case and
the solid line is the weakly interacting Bose gas. The transition
temperature in the interacting case is marked with an arrow. Note
that while in the ideal case the heat capacity is discontinuous at the
transition temperature, it appears that in the interacting case it is
completely continuous. Further, in the latter case, the transition does
not occur at the maximum value of cv but at its minimum. Units are
�=1, m=1, and a=1.

FIG. 4. Condensate fraction N0 /N as a function of temperature
T for an interacting Bose gas confined by a linear quadrupolar trap.
Note that the derivative of the curve is continuous at the transition.
See text for details. Units are �=1, m=1, and a=1.
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Hc.m.
�2� =

P� 2

2�2m�
+ Vext
R� +

r�

2
� + Vext
R� −

r�

2
� �A4�

and the two-particle relative-coordinates one is

H2 =
p�2

2�m/2�
+ u�r� . �A5�

The integrals over the momenta yield 1 /�T
6. Notice, however,

that the integrals over R� depend strongly on r�, even for par-
ticles confined in a rigid vessel of volume V. In such a case,
the boundary terms couple the integrals. We rewrite I2 as
follows:

I2 =
1

�T
6 � d3R� d3re−
�Vext�R

� +�r�/2��+Vext�R
� −�r�/2���f�r� ,

�A6�

where we have introduced the Mayer function f�r�=e−
u�r�

−1. Here we provide the important step: The function f�r�
vanishes for distances r longer than the range of the intermo-
lecular potential �, i.e., the value of r is bounded, r��.
Hence, in the thermodynamic limit, in which the external
potential becomes “shallower” and “shallower” and the vol-
ume of the system larger and larger, we can set

Vext
R� +
r�

2
� + Vext
R� −

r�

2
� � 2Vext�R� � . �A7�

This is the thermodynamic limit. Therefore,

I2 =
1

�T
6 � d3 Re−2
Vext�R

� � � d3rf�r� =
V
�T

6 �2
�b2, �A8�

where we have identified the classical second virial coeffi-
cient b2. Thus, the well-known bound is that the intermolecu-
lar potential must vanish for lengths r��. Clearly, it must be
“short-range” interaction �faster than 1 /r3�, otherwise b2
does not exist.

Quantum case. Again, from the expressions in Sec. III,
one finds

I2 =� d3r1� d3r2��r�1,r�2�e−
H2�r�1,r�2� + ��r�1,r�2�e−
H2�r�2,r�1��

−� d3r1�r�1�e−
H1�r�1� � d3r2�r�2�e−
H1�r�2� , �A9�

where �= �1 for bosons or fermions. The derivation follows

essentially the same steps as in the classical case. First, one
performs the same change of variables as in Eq. �A2� to
rewrite I2. Then, the thermodynamic limit may be taken by
separating the center-of-mass motion from the relative one. It
can be realized that for high temperatures the range of the
variable r� is bounded due to presence of the potential u�r�. At
low temperatures the bound is set up by either the thermal de
Broglie wavelength or the scattering length a. Therefore, as
long as r remains bounded by a finite quantity, however
large, one can take the limit of very large volumes, V→�,
and implement the thermodynamic limit just as in the clas-
sical case. One finds

I2 =
V
�T

6 �2
�b2, �A10�

formally identical with its classical counterpart, formula
�A8�, but with the quantum second virial coefficient

b2 = 23/2�T
3 � d3r��r��e−
H2�r��

+ ��r��e−
H2�− r�� − �r��e−
p2/2�m/2��r��� , �A11�

where H2 is given by Eq. �A5�. As a rule, in the thermody-
namic limit the center-of-mass motion is always quasiclassi-
cal �40�. The expression for the quantum second virial coef-
ficient above can be seen to be the correct one by comparing,
for instance, with the expression given in Ref. �40�. For slow
collisions, the relevant ones for ultracold gases, b2 depends
on the scattering length and this may become quite large near
a Feschbach or potential resonance. The formulas here de-
rived may then be not applicable very near such a point,
called the unitarity limit, but as it has been shown �22� this
may be expected since in such a limit the system behaves as
if near a critical point. We add that the description of the
scattering energies near resonances is valid for interatomic
potentials u�r� that decay at least as 1 /r3 �41�.

To end this Appendix, we calculate b2 for an ideal quan-
tum gas, i.e., for u�r�=0. One finds the so-called “exchange”
contribution to the second virial coefficient,

b2
�0� = �

1

23/2�T
3 . �A12�
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